Improved concentration bounds for sums of independent sub-exponential random variables

نویسندگان

چکیده

Known Bernstein-type upper bounds on the tail probabilities for sums of independent zero-mean sub-exponential random variables are improved in several ways at once. The new have a certain optimality property.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Tail Bounds for Sums of Geometric and Exponential Variables

We give explicit bounds for the tail probabilities for sums of independent geometric or exponential variables, possibly with different parameters.

متن کامل

Estimating Sums of Independent Random Variables

The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set of independent nonnegative random variables with expectations equal to 1, is it true that P ( ∑n i=1 Xi < n + 1) > 1 e ? He proved that P ( ∑n i=1Xi < n + 1) > 1 13 . In this paper we prove that infimum of the P ( ∑n i=1Xi < n + 1) can be achieved when all random variables have only two possible values, a...

متن کامل

Upper and lower bounds for sums of random variables

In this contribution, the upper bounds for sums of dependent random variables X1 + X2 + · · · + Xn derived by using comonotonicity are sharpened for the case when there exists a random variable Z such that the distribution functions of the Xi , given Z = z, are known. By a similar technique, lower bounds are derived. A numerical application for the case of lognormal random variables is given. ©...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2022

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2022.109666